Polylogarithm

Webpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic integral function.. Floating-point evaluation of the polylogarithm function can be slow for complex arguments or high-precision numbers. WebMay 18, 2009 · The nth order polylogarithm Li n (z) is defined for z ≦ 1 by ([4, p. 169], cf. [2, §1. 11 (14) and § 1. 11. 1]). The definition can be extended to all values of z in the z-plane cut along the real axis from 1 to ∝ by the formula [2, §1. 11(3)]. Then Li n (z) is regular in the cut plane, and there is a differential recurrence relation ...

polylog function - RDocumentation

WebThe Wolfram Language supports zeta and polylogarithm functions of a complex variable in full generality, performing efficient arbitrary-precision evaluation and implementing extensive symbolic transformations. Zeta — Riemann and generalized Riemann zeta function. RiemannSiegelZ RiemannSiegelTheta StieltjesGamma RiemannXi. WebPolylogarithms of Numeric and Symbolic Arguments. polylog returns floating-point numbers or exact symbolic results depending on the arguments you use. Compute the polylogarithms of numeric input arguments. The polylog function returns floating-point numbers. Li = [polylog (3,-1/2), polylog (4,1/3), polylog (5,3/4)] green tea with honey for diabetes https://ethicalfork.com

Spence

Webtween multiple polylogarithm values at Nth roots of unity, Racinet attached to each finite cyclic group G of order N and each group embedding ι : G → C×, a Q-scheme DMRι which associates to each commutative Q-algebra k, a set DMRι(k) that can be decomposed as a disjoint union of sets DMRι λ(k) with λ ∈ k. He also exhibited a Q- WebThe polylogarithm function is an important function for integration, and finding seemingly complicated sum. Polylogarithm is connected to the infinite geometric progression sum ... WebIn mathematics, the complete Fermi–Dirac integral, named after Enrico Fermi and Paul Dirac, for an index j is defined by = (+) +, (>)This equals + ⁡ (), where ⁡ is the polylogarithm.. Its … green tea with honey calories

PolyLog Function - Wolfram Demonstrations Project

Category:Spence

Tags:Polylogarithm

Polylogarithm

Spence

Webpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic … WebOct 8, 1999 · Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider …

Polylogarithm

Did you know?

WebOct 24, 2024 · In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Li s (z) of order s and argument z.Only for special … WebThe Polylogarithm package provides C, C++ and Fortran implementations of various polylogarithms, including the real and complex dilogarithm, trilogarithm, and (Standard and Glaisher) Clausen functions. The implementations have been fully tested against the literature and many other implementations and are highly optimized for fast numerical ...

WebWe associate to a multiple polylogarithm a holomorphic 1-form on the universal abelian cover of its domain. We relate the 1-forms to the symbol and variation matrix and show that the 1-forms naturally define a lift of … WebInformally, a cluster polylogarithm is a homotopy-invariant iterated integral ż γ ÿ i “ dlogpai 1q ... dlogpai nq ‰ on XsmpCq where for each ithere exists a cluster containing cluster variables ai 1,...,a i n. We call the latter condition cluster adjacency, it was inspired by [DFG18]. Consider the following simplest example.

WebThe dilogarithm Li_2(z) is a special case of the polylogarithm Li_n(z) for n=2. Note that the notation Li_2(x) is unfortunately similar to that for the logarithmic integral Li(x). There are also two different commonly encountered normalizations for the Li_2(z) function, both denoted L(z), and one of which is known as the Rogers L-function. The dilogarithm is … Webgives the Nielsen generalized polylogarithm function . Details. Mathematical function, suitable for both symbolic and numerical manipulation.. . . PolyLog [n, z] has a branch cut …

WebMar 3, 1997 · We prove a special representation of the polylogarithm function in terms of series with such numbers. Using … Expand. 1. PDF. Save. Alert. Identities Involving Generalized Harmonic Numbers and Other Special Combinatorial Sequences. Huyile Liang; Mathematics. 2012;

WebMay 18, 2009 · The nth order polylogarithm Li n (z) is defined for z ≦ 1 by ([4, p. 169], cf. [2, §1. 11 (14) and § 1. 11. 1]). The definition can be extended to all values of z in the z … fnb industrialWebPolylogarithms of Numeric and Symbolic Arguments. polylog returns floating-point numbers or exact symbolic results depending on the arguments you use. Compute the … fnb indian trail ncWebs(z) resembles the Dirichlet series for the polylogarithm function Li s(z). Nice reviews of the theory of such functions are given by Lewin [2,19] and Berndt [10]. Cvijović published integral representations of the Legendre chi functio [20], which are thus likely to provide, via χ 2(z), expressions for Li 2(z)−Li 2(−z). 4 Conclusion green tea with honey side effectsWebFeb 5, 2016 · The functions dilogarithm, trilogarithm, and more generally polylogarithm are meant to be generalizations of the logarithm. I first came across the dilogarithm in college when I was evaluating some integral with Mathematica, and they've paid a visit occasionally ever since. Unfortunately polylogarithms are defined in several slightly different and … fn bibliography\u0027sWebThe polylogarithm , also known as the Jonquière's function, is the function. (1) defined in the complex plane over the open unit disk. Its definition on the whole complex plane then … fnb industrial branch code gaboroneWebJun 26, 2015 · Polylogarithm ladders provide the basis for the rapid computations of various mathematical constants by means of the BBP algorithm (Bailey, Borwein & Plouffe 1997)), monodromy group for the polylogarithm (Heisenberg group) Share. Improve this … fnb id cardWebContour integral representations (2 formulas) Multiple integral representations (1 formula) PolyLog [ nu, p, z] PolyLog [2, z] fnb industrial contacts